1 On the eigenvalue problem for arbitrary odd elements of the Lie superalgebra gl(1|n) and applications
نویسندگان
چکیده
On the eigenvalue problem for arbitrary odd elements of the Lie superalgebra gl(1|n) and applications Abstract In a Wigner quantum mechanical model, with a solution in terms of the Lie superalgebra gl(1|n), one is faced with determining the eigenvalues and eigenvectors for an arbitrary self-adjoint odd element of gl(1|n) in any unitary irreducible representation W. We show that the eigenvalue problem can be solved by the decomposition of W with respect to the branching gl(1|n) → gl(1|1) ⊕ gl(n − 1). The eigenvector problem is much harder, since the Gel'fand-Zetlin basis of W is involved, and the explicit actions of gl(1|n) generators on this basis are fairly complicated. Using properties of the Gel'fand-Zetlin basis, we manage to present a solution for this problem as well. Our solution is illustrated for two special classes of unitary gl(1|n) representations: the so-called Fock representations and the ladder representations.
منابع مشابه
On the eigenvalue problem for arbitrary odd elements of the Lie superalgebra gl(1|n) and applications
In a Wigner quantum mechanical model, with a solution in terms of the Lie superalgebra gl(1|n), one is faced with determining the eigenvalues and eigenvectors for an arbitrary selfadjoint odd element of gl(1|n) in any unitary irreducible representation W . We show that the eigenvalue problem can be solved by the decomposition of W with respect to the branching gl(1|n) → gl(1|1)⊕gl(n−1). The eig...
متن کاملAn Analog of the Classical Invariant Theory for Lie Superlagebras
Let V be a finite-dimensional superspace over C and g a simple (or a “close” to simple) matrix Lie superalgebra, i.e., a Lie subsuperalgebra in gl(V ). Under the classical invariant theory for g we mean the description of g-invariant elements of the algebra A p,q k,l = S . (V k ⊕Π(V ) ⊕ V ∗p ⊕Π(V )). We give such description for gl(V ), sl(V ) and osp(V ) and their “odd” analogs: q(V ), sq(V );...
متن کاملHidden Algebras of the (super) Calogero and Sutherland models
We propose to parametrize the configuration space of one-dimensional quantum systems of N identical particles by the elementary symmetric polynomials of bosonic and fermionic coordinates. It is shown that in this parametrization the Hamiltonians of the AN , BCN , BN , CN and DN Calogero and Sutherland models, as well as their supersymmetric generalizations, can be expressed — for arbitrary valu...
متن کاملThe Main Eigenvalues of the Undirected Power Graph of a Group
The undirected power graph of a finite group $G$, $P(G)$, is a graph with the group elements of $G$ as vertices and two vertices are adjacent if and only if one of them is a power of the other. Let $A$ be an adjacency matrix of $P(G)$. An eigenvalue $lambda$ of $A$ is a main eigenvalue if the eigenspace $epsilon(lambda)$ has an eigenvector $X$ such that $X^{t}jjneq 0$, where $jj$ is the all-one...
متن کاملGel’fand-Zetlin Basis and Clebsch-Gordan Coefficients for Covariant Representations of the Lie superalgebra gl(m|n)
A Gel’fand-Zetlin basis is introduced for the irreducible covariant tensor representations of the Lie superalgebra gl(m|n). Explicit expressions for the generators of the Lie superalgebra acting on this basis are determined. Furthermore, Clebsch-Gordan coefficients corresponding to the tensor product of any covariant tensor representation of gl(m|n) with the natural representation V ([1, 0, . ....
متن کامل